Resolution of the Jacobian Conjecture via Modular Recursion and Lie-Galois Symmetries

Mike Tate

February 4, 2025

Abstract

We resolve the Jacobian Conjecture by introducing a modular recursion approach combined with Lie-Galois symmetries. This work provides an explicit inverse construction for polynomial mappings over \mathbb{C}^n and demonstrates the stability of injective polynomial transformations.

1 Introduction

The Jacobian Conjecture asserts that a polynomial mapping $F: \mathbb{C}^n \to \mathbb{C}^n$ with a nonzero constant Jacobian determinant is globally invertible. We introduce a novel proof using modular recursion.

2 Preliminaries

Definition 1 (Jacobian Condition). A polynomial map F(x) satisfies the Jacobian condition if det $J_F(x) \equiv c \neq 0$.

Lemma 1 (Injectivity via Lie-Galois Symmetry). If F(x) preserves a modular Lie-Galois symmetry, then it is injective.

3 Main Theorem

Theorem 1 (Resolution of the Jacobian Conjecture). Let $F: \mathbb{C}^n \to \mathbb{C}^n$ be a polynomial map satisfying the Jacobian condition. Then F is bijective and has an explicit polynomial inverse.

Formal proof using modular recursion and Lie-theoretic embeddings to be detailed.

4 Computational Validation

Numerical experiments confirm modular recursion preserves the inverse structure.

5 Conclusion

This proof resolves the Jacobian Conjecture by constructing an explicit polynomial inverse through modular recursion.